RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames.

نویسندگان

  • Xue-Cheng Zhang
  • Walter Gassmann
چکیده

Arabidopsis RPS4 belongs to the Toll/interleukin-1 receptor (TIR)-nucleotide binding site (NBS)-Leu-rich repeat (LRR) class of disease resistance (R) genes. Like other family members in different plant species, RPS4 produces alternative transcripts with truncated open reading frames. The dominant alternative RPS4 transcripts are generated by retention of intron 3 or introns 2 and 3, which contain in-frame stop codons and lie downstream of the NBS-encoding exon. We analyzed the biological significance of these alternative transcripts in disease resistance by removing introns 2 and 3, either individually or in combination, from a functional RPS4-Ler (Landsberg erecta) transgene. Removal of one or both introns abolished the function of the RPS4 transgene, whereas expression was not affected. In addition, a truncated RPS4-Ler transgene encoding the putative TIR and NBS domains was not sufficient to confer resistance, suggesting that the combined presence of regular and alternative RPS4 transcripts is necessary for function. Interestingly, we observed partial resistance in transgenic lines expressing both intron-deficient and truncated transgenes. This finding confirms the requirement for regular and alternative RPS4 transcripts and indicates that alternative transcripts function at the protein level rather than as regulatory RNAs. Together with published results on the tobacco N gene, our data suggest that the generation of alternative TIR-NBS-LRR R gene transcripts is of general biological significance across plant species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-Mediated Disease Resistance Requires the Combined Presence of RPS4 Transcripts with Full-Length and Truncated Open Reading Frames

Arabidopsis RPS4 belongs to the Toll/interleukin-1 receptor (TIR)–nucleotide binding site (NBS)–Leu-rich repeat (LRR) class of disease resistance ( R ) genes. Like other family members in different plant species, RPS4 produces alternative transcripts with truncated open reading frames. The dominant alternative RPS4 transcripts are generated by retention of intron 3 or introns 2 and 3, which con...

متن کامل

Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses.

The Arabidopsis (Arabidopsis thaliana) disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE4 (RPS4) activates defenses in response to bacterial pathogens expressing avrRps4 in a gene-for-gene specific manner. The RPS4 gene produces multiple transcripts via alternative splicing of two regular introns flanking exon 3 and a cryptic intron within exon 3. We showed previously that RPS4-medi...

متن کامل

Cloning and characterization of 40S ribosomal protein S4 gene from Culex pipiens pallens.

The 40S ribosomal protein S4 gene (RPS4) has been cloned from Culex pipiens pallens. An open reading frame (ORF) of 789 bp was found to encode a putative 262 amino acid protein. The deduced amino acid sequence shares 96% and 91% identity with RPS4 genes from Aedes and Anopheles respectively. Transcript expression of RPS4 was determined by real-time PCR in all life stages of deltamethrin-suscept...

متن کامل

Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90.

The Arabidopsis RPS4 gene belongs to the Toll/interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) class of plant resistance (R) genes. It confers resistance to Pseudomonas syringae carrying the avirulence gene avrRps4. Transient expression of genomic RPS4 driven by the 35S promoter in tobacco leaves induces an AvrRps4-independent hypersensitive response (HR). The sam...

متن کامل

Leucine zipper motif in RRS1 is crucial for the regulation of Arabidopsis dual resistance protein complex RPS4/RRS1

Arabidopsis thaliana leucine-rich repeat-containing (NLR) proteins RPS4 and RRS1, known as dual resistance proteins, confer resistance to multiple pathogen isolates, such as the bacterial pathogens Pseudomonas syringae and Ralstonia solanacearum and the fungal pathogen Colletotrichum higginsianum. RPS4 is a typical Toll/interleukin 1 Receptor (TIR)-type NLR, whereas RRS1 is an atypical TIR-NLR ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 15 10  شماره 

صفحات  -

تاریخ انتشار 2003